Node.js vs. Python Comparison

Node.js and Python are two established solutions for server-side application development. With either platform, your team can develop and manage web apps of any complexity and functionality.
As an app owner, you might be wondering which tool to choose for your next project. The choice will not be easy, and to make the final decision you should be aware of the advantages and limitations of Node and Python, and, more importantly, understand cases and types of applications where Node.js could be better than Python, and vice versa.
Overview
Unlike Python, which is a fully-fledged scripting language, Node.js is a JavaScript runtime environment designed to use JavaScript on web servers, manage computing resources, file systems, and web application security.
Node.js is one of a few server-side solutions based on the concept of event-driven programming, which allows creating highly scalable servers without threading.
On top of that, Node supports multiple concurrent requests and operations via asynchronous calls and non-blocking I/O.
On the other hand, like JavaScript that underlies Node.js, Python is a high-level, interpreted, object-oriented programming language with a focus on readability and productivity.
Python, founded in 1991 by the developer Guido Van Rossum, supports multiple programming paradigms, which makes it a great choice for a variety of business tasks.
With Python’s object-oriented programming and comprehensive standard library, which supports automatic memory management and dynamic features, you can build a wide variety of applications for servers and desktops.

Pros of Node.js
1. Fast server-side solution
Even though in Node.js, your code usually runs in a single thread, its event-based architecture and non-blocking I/O allow for maximising the usage of a single CPU and computer memory, making servers faster and more productive.
The event-driven architecture based on asynchronous calls allows Node.js servers process more concurrent requests than most conventional multi-threaded servers.
And with v10.5.0 came the Worker Threads, allowing you to delegate some work to separate threads as well, somewhat mitigating the problem of single-core usage. In addition, Node.js’s non-blocking I/O, which does not block program execution under I/O-heavy workloads, is the first thing that improves the runtime performance of Node.js applications, making Node one of the fastest server-side solutions around.
2. One language on both the front- and the back-end
One of the most cited issues in web application development is the usage of different languages and environments at the back end and front end.
Written in JavaScript, the dominant language of the front-end development, Node.js apps elegantly avoid this limitation.
With Node.js installed on the server, you can use the same programming language as in your preferred front-end frameworks, such as Ember, React, or Angular to leverage the power and flexibility of JavaScript in creating dynamic Web 2.0 applications.
The same language at the front end and the back end means you need a smaller and more efficient team, which can communicate better and, as a result, deliver tasks much faster.

3. Scalable solution
Even though Node.js is a single-threaded solution, its standard library provides modules that support high scalability.
Node clusters and workers are abstractions that can spawn additional Node.js processes depending on the workload of your web application.
Limited only by the number of CPUs, you can easily scale your Node applications to fully functional enterprise solutions.
And since Worker Threads became a thing, we can easily spawn multiple CPU-intensive threads that will not block the main event-loop.
Cons of Node.js
1. Less efficient with CPU-intensive operations
Node’s event-driven architecture comes with certain limitations as far as CPU-intensive operations are concerned. Although Node is great in handling multiple concurrent requests, it exhibits significant performance bottlenecks in such operations as generating graphics or resizing images.
Luckily, a workaround in which you make a new task queue to manage CPU intensive requests exists, but it requires spawning additional workers or using Worker Threads and introducing new layers to your Node.js application.
2. Poor quality or lack of documentations for some modules in npm
Node.js philosophy leaves it too much freedom of choice for developers in what modules and tools to select. What follows is that developers can spend a considerable amount of time figuring out which module or library to choose for handling a development task. Developers need more planning, time, and involvement to find well-maintained modules and install and integrate them.
Unfortunately, some of these modules might be buggy and introduce unexpected behaviour to your Node applications. If your application uses many modules built by different developers and having a different level of maintenance and bug fixing, it is crucial to have an experienced developer in your team.

Pros of Python
1. Ease of Use
Python has a concise and expressive syntax that helps think more clearly when writing programs and makes it easier for others to maintain and enhance your applications.
Also, being dynamically typed and flexible, Python allows writing a code that is less verbose but more modular and extensible.
Python’s readability facilitates the coordination of teams working on large projects and helps concentrate on completing real tasks rather than scaffolding and tweaking your code base.
Python is also quite easy to learn, which allows experienced developers to quickly jump into your Python projects and bring their experience in other programming languages to the table.

2. Fast Development
Thanks to clean, concise and simple syntax, developing in Python is much faster than in Java or C.
Although it’s always difficult to provide an accurate assessment of the development speed, most experts agree that developing a Python application is about 5 to 10 times faster than developing the same application in Java.
The time savings are even greater if compared to C and C++. The speed advantages substantially outweigh performance downsides of Python that originate from its interpreted nature and dynamic typing.
Due to the language’s extremely stable architecture, the availability of web development frameworks (e.g Django) and third-party modules, applications developed in Python are no less reliable than those written in any other framework.

3. Rich Standard Library and Ecosystem
The rich standard/native library for server-side development is one of the main strengths of Python in comparison to Node.js.
If you look at the standard library that comes with JavaScript, it’s relatively minimal. To include the advanced functionality for the management of file system or memory in Node.js, you need to use Node package manager (npm), which leads to the extra work of selecting and checking the installed modules and packages.
In Python, however, many useful functions come natively. For example, Python supports deleting a directory, creating temp files, argument parsing, unit testing, logging, printf format strings and many more by default.
If Python’s standard library lacks the functionality you need, similarly to Node.js, Python has a developed ecosystem of modules to choose from.
Python Cons
1. Absence from Mobile Computing and Browsers
Python is supported on many server and desktop platforms but is not well-supported in mobile computing and browsers. This implies that developing a web application with Python will require at least two different languages in your stack. This can complicate interaction between the front-end and back-end teams and increase maintenance and debugging time and costs. Node.js, which uses JavaScript for both front-end and back-end, is free from this limitation.
2. Lack of Support for DSLs (Domain-specific Languages)
JavaScript allows developers to use transpiler tools like Babel and Domain-specific Languages (DSL) to experiment with and/or create a new syntax that optimises UI development and makes it faster.
The Python community does not have an equivalent mechanism for experimenting with DSLs, which makes it more difficult to express UI code in Python compared to JavaScript and Node.js.
Use Cases
Our brief overview demonstrates that neither Node nor Python is perfect. If so, how to make the right decision about which one to use?
The answer is straightforward: both environments are good for different types of apps and tasks.

Node’s power in handling heavy I/O operations and shuffling of data between the front end and the back end also makes it a great choice for Single Page Applications (SPAs), which involve heavy client-side processing and rendering.
Similarly, whenever performance and scalability of web applications are of concern, the lightweight and fast Node.js outperforms Python.
At the same time, you should opt for Python if you are building CPU-intensive applications.
The thing is that Node’s single-threaded design is not suitable for CPU intensive operations with graphics and data. You can work around it with Worker Threads or worker processes, but it might be more hassle than it’s worth. Making heavy computations in these types of tasks may simply block all incoming requests, leading to the slower performance of your web application.
Also, you should definitely choose Python when the speed of development is critical. With its rich standard library and modules available out of the box, Python solutions are very powerful in Rapid Application Development (RAD).
With Python, you don’t need to search for many utility modules and packages for your application. Instead, you can immediately proceed with the design of a fully functional prototype, which could be supplemented with other features later.
Python’s simple and concise syntax makes writing code very fast too.

Finally, many experts cite Python’s expressiveness and ease of use, along with its vibrant community, as one of the main reasons to use the language in the Internet of Things projects.
On top of that, Python is the language of choice for one of the most popular micro-controllers for IoT devices in the market, the Raspberry Pi. Since much of the training literature for IoT and Raspberry Pi is written in Python, it’s natural to use this language for IoT programming.
Summary
- When choosing between Python and Node.js, you should definitely consider the speed of development, the need for scalability, and your application’s type.
- If your requirement is fast development of CPU-heavy applications or the development of IoT back-end, go for Python.
- Conversely, choose Node.js if you are thinking about RTAs, SPAs, and other I/O heavy solutions.
Hopefully, this overview will help you make the right choice of your web development environment for the next project.